
Outside-In:
O.K.I. Open Service Interface Definitions (OSIDs) as a Native 

Framework API

Adam Franco - Middlebury College
Alex Chapin - Middlebury College



Background

What We Have Built

Challenges

Where We Are Going



Background



Our Position in 2003

We had built 4 curricular systems, and wanted 
to build more.

Newer systems grew out of older systems, with 
commonly used code copied over and then 
‘tweaked’.

Fixes and ‘tweaks’ broke code compatibility 
and led to many systems with similar bugs.



Why use a framework?

No reinventing of common parts in each application.
authentication, group management, etc

One place to look for bugs in common parts.

Easier data sharing between applications
create a group once, it is usable in all apps



Why did we build our own framework?

Existing frameworks were focused on execution control and 
presentation.

We needed a set of common services as well.



Why use the O.K.I. OSIDs as a 
framework API?

They cover all major service areas.

Services are designed together as a set without 
overlapping responsibilities.

OSIDs are a standard -- not a one-off API -- 
increasing the chances of interoperability with 
3rd parties.



Common Interoperability Patterns

Application

O
S
ID

 P
ro

vid
er

OSID 

Consumer

Data Store
Application

O
S
ID

 P
ro

vid
er

OSID 

Consumer



OSIDs as Framework API
Application
(OSID Consumer)

Other OSID 

Consumer

OSID Provider (Harmoni)

? ? ?



OSIDs as Framework API
Application
(OSID Consumer)

Other OSID 

Consumer

OSID Provider (Harmoni)

? ? ?

• Integration point always available, no wrapper needed.
• Provider is general enough to support many applications.
• Enable new storage options or performance characteristics by exchanging 

OSID Provider implementations.

Concerto
(OSID Consumer)

Segue
(OSID Consumer)



What We Have Built



Harmoni

A service-oriented framework

Includes implementations of most OSIDs as well as other 
services (tagging, image processing, etc).

Includes optional controller and UI layout/theming systems.

http://harmoni.sourceforge.net



Two curricular applications built on 
Harmoni

Multimedia D.A.M.

Catalog with Dublin Core, 
VRA, and other metadata

User-based tagging

Build slideshows of media

CMS with curricular focus

Build web sites/blogs

Collaborative editing

Threaded discussions

Pluggable content

Concerto Segue



Concerto
Media-Asset hierarchy is created by users for 
their needs (maps directly to the Repository 
OSID).

Users can choose and/or define metadata 
schemas

Slideshows are a separate Asset hierarchy with 
a field for the ID of the media Asset to display.



Adam’s 
Repository

Asset AssetContainer 
Asset

Asset Asset

Slideshow 
Repository

Adam’s 
Slideshows

Slideshow A

Alex’s 
Slideshows

Slideshow B

Slide 1

Slide 2

Slide 3

Slide 1

Slide 2

Slide 3

All Concerto Repositories



Some OSID advantages
Storage and authorization are taken care of by 
the Repository.

Unique IDs allow easy building of slideshow 
tools.

User interface is the only remaining challenge.

Well-defined integration point for other 
systems.



Segue
Web site hierarchy is stored as Asset hierarchy

Navigational nodes store their layout information in Asset 
content.

Micro-Content (plugin instances) store most data in Asset 
fields.

Media are Assets attached to a micro-content Asset at time of 
upload.

Threaded discussions are Assets in the same site hierarchy.



Site

Section

Segue Sites Repository

Section

Subsection Subsection

Page Page

Content Plugin Content Plugin

Media Container Comment Container

Image

Image

Comment

Comment

Reply

SiteSite

•Each element is an Asset.
•Authorizations cascade.

Content Plugins can link to 
media attached to themselves, 
other Content Plugins, or in 
other Repositories.

Concerto Asset



Some OSID advantages
Hierarchical authorizations are built in and can be enforced 
during any access.

Segue data can be accessed for read and write from other 
applications.

Browsing media in external repositories is as easy as 
browsing local media.

Consistent structure for all data objects.



Use Concerto to browse data Assets of Segue and other applications.

Add other Assets to Concerto Slideshows.

Use Concerto to add metadata to Assets.

Adam’s 
Repository

Slideshow 
Repository

All Concerto Repositories

Segue Sites 
Repository

Trail Server 
Repository

Sharing Data



Challenges



OSID v2 Issues
(all fixed in v3)

Authentication process missing key interactions.

Numerous “out-of-band agreements”
i.e. search types and syntax

Many operations force the retrieval of 
unneeded data.

Java-based API didn’t always mesh with our 
PHP4 environment. (lack of exceptions)



Other Challenges

Limited in-language community - no other implementations 
to test against.

Delayed gratification - building a framework is a lot of work.



Where We Are Going



XML-RPC OSID Bindings
Talk across networks and/or programming languages.

Java Application
(OSID Consumer)

Java OSID Provider

PHP Application
(OSID Consumer)

(XML-RPC OSID Provider)

(Java OSID Consumer)

Network

(Java OSID Provider)

(XML-RPC OSID Consumer)

(PHP OSID Provider)

(XML-RPC OSID Consumer)


